Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We use diamond nanoparticles (DNPs) wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) and bilayers composed of either pure DOPC or a mixture of DOPC/DOPG to investigate the influence of membrane phospholipid composition and net surface charge on nanoparticle-membrane interactions and the extent of nanoparticle adhesion to supported phospholipid bilayers. Our results show that in all cases electrostatic attractions between the negatively charged bilayer and cationic PAH-DNP were responsible for the initial attachment of particles, and the lateral electrostatic repulsion between adsorbed particles on the bilayer surface determined the final extent of PAH-DNP attachment. Upon attachment, NPs attract lipids by the contact ion pairing between the ammonium groups on PAH and phosphate and glycerol groups on the lipids and acquire a lipid corona. Lipid corona formation on the PAH-DNP reduces the effective charge density of the particle and is in fact a key factor determining the final extent of NP attachment to the bilayer. Incorporation of DOPG to the bilayer leads to a decrease in efficiency and final extent of attachment compared to DOPC alone. The reduction in PAH-DNP attachment in the presence of DOPG is attributed to the adsorption of free PAH in equilibrium with bound PAH in the nanoparticle solution, thus reducing electrostatic attraction between PAH-DNPs and SLBs. This leads to an increase in hydrogen bonding interactions between lipid headgroups that limits extraction of phospholipids from the bilayer by PAH-DNP, lessening the reduction in interparticle repulsion achieved by acquisition of a lipid corona. Our results indicate that the inclusion of charged phospholipids in SLBs changes bilayer rigidity and stability and hinders the attachment of PAH-DNPs by preventing lipid extraction from the bilayer.more » « less
-
High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800–900 °C for 1–2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals.more » « less
An official website of the United States government
